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Abstract 
The objective of the current project is the development of the fundamentals of a novel two-scale 
multiscale computational method for the nonlinear damage and failure analysis of 3D woven 
fiber composites under ballistic loading. Since material behavior is determined by its 
microstructure, it is essential to accurately model the physics at that scale. The macroscale 
analysis provides a useful insight into the underlying high strain rate physics which is essential in 
modeling the lower micro-scale. In particular a rate dependent constitutive approach is being 
developed coupled with continuum damage mechanics suitable for polymer materials. The effect 
of contact parameters on the underlying damage processes is being studied and worked on. We 
further develop a material model suitable particularly for loading of composites in the high 
strain rate regime. This is a significant development from the previous model where strain 
rate sensitivity is a-priori postulated for the matrix dominated modes in the small strain 
framework. We focused on developing a general homogenized anisotropic material model 
and obtained results which can be implemented in a finite element framework for high strain 
rate loading. 
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1. Introduction 
Ballistic penetration of composites involves a number of nonlinearities acting together stemming 
from high strain rates, contact-impact and evolving damage. The membrane models (Leigh 
Phoenix and Porwal 2003; Nadler et al. 2006), usually developed for fabric systems, are 
inapplicable in the case of 3D orthogonal woven composites (3D-OWC) because of elastic 
membrane assumptions, inability to incorporate strain rate effects, limitations pertaining to 
simple stress/strain based failure laws and lack of systematic framework to complicated 
geometries and large deformations. This limits the usability of these models for advanced 
composites like 3D-OWC. On the other hand, a microscale simulation with resolution of 
individual fiber filament is impractical due to enormous computational resources needed. This 
has led to various homogenization schemes both for material properties and damage laws. These 
methods increasingly popular since the middle of the last decade have severe technical 
difficulties. Some of these methods try to drastically cut computing time by unit cell level 
homogenization (Baheieldin et al. 2004; Bahei-El-Din and Zikry 2003; Pankow et al. 2011; 
Pankow et al. 2011). The periodicity of the unit cell makes it an ideal candidate for the classical 
representative volume element (RVE). However, this assumption is invalid for short wavelength 
regimes such as a pulse-loading event like ballistic impact. Oskay and Fish (2007) sidestep the 
problem by applying asymptotic homogenization at the level of fiber and filament through an 
eigendeformation formulation. Unfortunately their analysis neglects strain rate and material 
nonlinearities in addition to requiring, often intractable, mathematical manipulations. In addition, 
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using the fiber filament and surrounding matrix as RVE is questionable since the architecture of 
an actual 3D-OWC is far more complex. It must also be noted that most of damage laws have not 
been compared with experimental penetration events. 

This issue is recently addressed by Sun et al. (2009) and Jia et al. (2010). A finite element 
analysis is performed with a critical damage area (CDA) theory at the unit cell level and results 
are compared with their own experiments. Although reasonable match between experimental and 
predicted exit velocities were reported, many of the material and damage parameters were taken 
ad hoc without a physical explanation. We would like to point out that developing models with a 
large number of parameters fit to match exit velocities only is not a viable modeling strategy due 
to its sensitivity to mesh distortion parameters, element deletion and the accuracy of the contact-
impact conditions. In addition, obtaining exact dynamic material parameters for every 
mechanical phenomena proposed in the model would require enormous amount of testing and 
calibration.  In the current work we address many of these shortcomings. We incorporate the 
nonlinearities in a systematic manner employing fewer parameters which can be independently 
obtained from experimentation of constituents of the composite. In addition, we employ a 
damage model which contains fewer parameters whose effects on the constitutive response are 
easier to understand and calibrate, are more intuitive to use and capture the physical 
consequences of the various damage modes. 

 

Figure 1: Spatial hierarchichal scales in a typical 3D-OWC applications. 

Constitutive performance of heterogeneous solids cannot be accurately predicted if the effect 
of microstructure is not incorporated into the constitutive model. Micro structural effects are 
pronounced in composite materials because of the presence of many different constituents with 
widely different properties. Such a varied composition is useful to impart desirable properties 
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like high strength to weight ratio and resistance to impact damage.  However, the variation of 
microstructure exists at various length scales, see Figure 1. 

It is very clear that computational load steadily increases as we move up spatial resolution. 
Within the broad division of atomic and continuum scales their lie a number of length scales. We 
will like to point out that the resolution necessary to obtain a reasonably accurate response is 
greatly influenced by the loading of the structure. As the impact energy increases, the resolution 
needed to accurately capture the response drops sharply. This is primarily due to the appearance 
of distributed micro scale damage as well as short wavelength waves which can be smaller than 
the RVE of the medium.  Therefore, it is inevitable that as the loading becomes more severe, for 
the same time period of computation, the computing requirement greatly increases forcing us to 
make an appropriate choice of the length scales.  We characterize the scale that lies between the 
unit cells (cm) to the fiber filament level (µm) as the meso scale. We use this scale to split the 
sources of nonlinearities – inelasticity and damage in a systematic manner which is both simple 
as well as deals with lesser number of parameters.  We exploit two simple characteristics of 3D-
OWC – (1) delamination mode of damage is suppressed for localized loading due to 3D integral 
weave in one layer of 3D-OWC and (2) closely clustered resin impregnated fibers (henceforth 
we call it yarns) can be modeled separately from the resin rich regions and assumed to be solely 
responsible for damage accumulation through various anisotropic failure modes due to weak 
interfaces and stress concentrators. This meso level scale separation reduces computing costs 
greatly, obviates the theoretical problems with conventional multiscale methods and helps to 
systematically deal with nonlinearities according to the physics of the separated regions. 

We develop a partitioned meso scale model for high strain rate modeling of ballistic impact 
on three-dimensional orthogonal woven composite. In this model, the entire material nonlinearity 
stemming from large deformation and strain rate effects before damage initiation was borne out 
by the polymeric resin. The anisotropic yarns are modeled using extensions of quasi-static small 
strain models with strain rate sensitivity empirically appended. We further extended the model of 
the yarn into a large deformation model. 

Modeling of large strain mechanics has been attempted before for anisotropic composites 
(Simo 1987, Matzenmiller 1995). However, they have not been extended systematically for high 
strain rate loading of anisotropic composites where important material parameter like Gruneisen 
tensor and damage modes becomes dominant (Anderson et al. 1990, 1994). We propose a 
damage law based on consistent thermomechanics for a typical unidirectional composite, which 
can be easily extended for composites with greater degree of anisotropy. 

The report is organized as follows. In section 2 we provide the details of the 
micromechanical constitutive model of resin. In section 3 constitutive and damage model for 
yarn is outlined. In section 4 the yarn model is further extended to accommodate finite 
deformation along with a yarn level damage model for high strain rate loading. In section 5 we 
discuss the simulation results followed by conclusions in section 6. 
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2. Constitutive modeling of resin  
The polymer resin considered in the current model is epoxy which is well known to exhibit 
strong rate dependence (Jordan et al. 2008), not considered in detail in any previous model for 
ballistic penetration of 3D-OWC. We have adopted the large deformation, high strain rate model 
developed by Mulliken and Boyce (2006). The Mulliken-Boyce model assumes that the 
resistance to the deformation in thermoplastics is caused due to intermolecular resistance to 
chain segment rotation and an entropic resistance to chain alignment. The constitutive model 
decomposes intermolecular deformation resistance into contributions from primary ‘α’ processes 
and secondary ‘β’ processes.  The α process is associated with rotations of the polymer main-
chain segments and the β process is associated with restricted rotation of side groups. The model 
assumes that the material response may be approximated as simple superpositioning of the two. 
The model may be envisioned as a five component structure composed of a pair of linear elastic 
springs and viscoplastic dashpots ‘Aα’ and ‘Aβ’ corresponding to the α and β processes and a 
nonlinear Langevin spring ‘B’ acting in parallel. The basic kinematic assumptions are based on 
multiplicative Lee-Kroner decomposition of deformation gradient tensor ‘F’ applied to all, 

FAα = FAα
e FAα

p ,    FAβ = FAβ
e FAβ

p ,    det(FAα
p ) = det(FAβ

p ) =1        (2.1) 

followed by an additive split of the velocity gradient tensor as, 

LAα = LAα
e +FAα

p LAα
p FAα

e−1 = LAα
e + LAα

p ,    LAβ = LAβ
e +FAβ

p LAβ
p FAβ

e−1 = LAβ
e + LAβ

p .      (2.2) 

The plastic velocity gradient is then additively decomposed into a symmetric stretch ( DAα
p , DAβ

p )  

and an unsymmetrical rotational ( WAα
p , WAβ

p )  component. The later is equated to zero by the 

hypothesis of irrotational plasticity. The stretch is further described using a coaxial flow rule  

DAα
p = γ i

pN Ai
p ,    N Ai

p =
!TAi
!TAi

,    i =α,β            (2.3) 

where primes denote deviatoric components of the Cauchy stress ‘T’ and γ i
p  the shear strain rate 

which is given by, 

γ i
p = γ0,i

p exp −
ΔGi
kBT

1−
τ i

si +α p,i p

#

$
%
%

&

'
(
(

)

*
+
+

,

-
.
.
           (2.4) 

such that, τ i =
1
2

!TAi !TAi
!

"
#

$

%
&
1/2

, s0,i = 0.077
µi

(1−ν i )
, and si = hi 1−

si
(1− sss,i )

"

#
$$

%

&
'' γ i

p ; where γ0,i
p  is the pre-

exponential factor, ΔGi  is the activation energy, kB  is the Boltzmann constant, T is the 

temperature, α p,i  is the pressure coefficient, p is the pressure, hi  is the softening slope, and si  is 

the athermal shear strength representing the internal structure of the material and is  related to 
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shear modulus µi  and Poisson’s ratio ν i  of the ith component through an appropriate hardening 
law. The dependence of internal structure on shear strain rate is a significant conclusion 
especially during loading and unloading of waves and this effect cannot be captured by 
commonly used simple shear strain dependent stress-strain laws (Meyers 1994). The stress in the 
non-linear hardening component, the network “back stress” due to the entropic resistance to 
molecular alignment, is taken to be deviatoric and is computed as, 

TB =
CR

3
N

λchain
p L−1 λchain

p

N
!

"
#

$

%
& 'BB             (2.5) 

where λchain
p =

trace(BB )
3

	
   is the stretch on a chain in the eight chain network, ‘L’ is the 

Langevin function defined byL(β) = cothβ − 1
β

, !BB  is the deviatoric part of the isochoric left 

Cauchy-Green tensor,	
   BB = (detFB )
−2/3FBFB

T , N  is the limiting chain extensibility and 

CR = Nkθ  is the rubbery modulus and N is the number of chains per unit volume, k is the 
Boltzmann constant, and θ  is the absolute temperature. The total stress in the polymer is given 
as the tensorial sum of the α and β intermolecular stresses and the network (back) stress, that is, 
T =TAα +TAβ +TB . Here, we simplify the composite failure by proposing a terminal failure model 

for the bulk matrix and account for the damage accumulation in the failure of the anisotropic 
fiber yarn. The bulk matrix polymer resin is assumed to fail terminally when failure strain is 
reached. This can be expressed in terms of the molecular chain stretch λchain

p  as,  

λchain
p ≥ λchain,cr

p ,    T ≥ Tcr,    σ ij = 0 .           (2.6) 

Here λchain,cr
p  is critical molecular chain length extension Tcr  is the melting temperature and σ ij  is 

internal Cauchy stress. Bergstrom et al. (2005) have demonstrated that this molecular chain 
length failure criterion is far more consistent than strain envelopes for polymers. In addition, the 
terminal damage law automatically takes into account the ductile to brittle transition at high 
strain rates.  

The resin is assumed to be Epon epoxy and its properties are taken from a recent paper by 
Jordan et al. (2008) and reproduced here.  Since adiabatic conditions are usually assumed during 
a typical high strain rate events, local rise of temperature can be computed without taking 
recourse to solving a heat transfer problem. We note that conversion of dissipative work to heat 
is a rather complex process for polymers where only a fraction of post yield work is converted to 
heat with the rest being stored (Garg et al. 2008).  In the current work, we assume that the 
dissipated work is contributed solely by the α and β component whereas the Langevin spring acts 
as pure energy storage component. If we denote the specific heat of epoxy as Cp  and mass 

density as ρ  we arrive at the following relation for rate of dissipated work (power), 
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Wdiss =TAα : DAα
p +TAβ : DAβ

p             (2.7) 

where overhead dot indicates time derivative and colon indicates scalar product.  

Assuming only a fraction β of this power is used to raise the temperature θ , we arrive at the 
following expression, 

θ = β
Wdiss

ρCp

.              (2.8) 

The exact value of the scalar β varies from 0.4 to 0.6 depending on strain and strain rates (Garg 
et al. 2008). In the current problem we assume the value of β=0.5.  

Table 1: Parameters of the Mulliken-Boyce model for EPON Epoxy1. 

να (θ , ε),  νβ (θ , ε)  0.38 

γ0,α (θ , ε)  2.29×1015s−1  
γ0,β (θ , ε)  2.0×106 s−1  

ΔGα  3.83×10−19 J  
ΔGβ  3.32×10−20 J  

α p,α ,  α p,β  0.316 

sss,α ,  sss,β  0.58MPa 

hα ,  hβ  300MPa 

CR  14.2MPa 
N 2.3m−1/2  
ρ  1140Kg  cm−3  
CP  2000JKg−1K −1  
1Jordan et al. 2008  

The strain rate dependent values of elastic constants are obtained from the DMA curves. The   
temperature rise predicted from the model can be seen in the Figure 2(a) and (b).  It is clear from 
the figure that temperature rise can be significant and burning of epoxy is very likely since the 
ignition temperature of many epoxy derivatives are about 800K.  This prediction is in agreement 
with the experimental findings of Walter et al. (2009) who have reported a distinct burning 
epoxy smell after the experiments.  We will assume terminal damage of material occurs at the 
ignition point. Interestingly, dependence of temperature rise on shear strain indicates that beyond 
a certain point, a runaway softening is possible in the material. This kind of thermal instability 
has been reported by in 3D-OWC by Pankow et al. (2011) in their SHPB experiments. However, 
we would like to note that in an actual penetration event macroscopic shear bands which can 
form underneath a projectile are quickly interrupted by the penetrating projectile as well as other 
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failure modes brought about by rapid through thickness wave propagation making post impact 
data reduction difficult. The shear bands may indeed form at the edges of the projectile due to 
strain localization but macroscopic cracks are likely to be interrupted by the much stronger fibers 
present in all three directions within a unit cell. It also likely that localized micro bands can 
become the sites of void nucleation thus activating other modes of mechanical failure. Therefore, 
possibility of shear bands alone may not necessarily cause defeat of an actual armor. 

 
 

 

3. Constitutive modeling of yarns  
Next, we describe the response of the fibers. The fibers themselves are held together by the resin 
forming a composite yarn. There yarns are composed of individual fibers running axially, 
embedded in the surrounding matrix material. For most ballistic applications involving 3D 
composites, S2-glass fibers are commonly employed which can be treated as elastic brittle with 
negligible plastic zone. Moreover, the distribution of the fibers inside the yarn is assumed to be 
uniform for every cross section which allows us to consider them as transverse and isotropic. We 
assume no twisting of the yarn which is a characteristic of the most popular 3D-OWC produced 
by 3Tex® Inc. Hence, these yarns can be treated as unidirectional composite by themselves 
embedded in the larger 3D composite. It is well known that unidirectional laminates exhibit 
strong nonlinearities in shearing response (Hahn and Tsai 1973).However, since the impact 
process causes quick proliferation of defects and microcracks, all the nonlinearity is assumed to 
come from damage which will be modeled in the next section. In addition, the basic assumption 
of yarn being a homogenized continuum is assumed to be valid at the yarn level. This 
assumption is similar to the one used by Matzenmiller et al. (1995) and implies that the defects in 
the composite material are treated in the mathematical model as having the equivalent effect on 
the elastic properties as disk-like cracks would exert, if they are only oriented either tangential or 
normal to the fiber direction. The rate effects on elastic property is neglected since the rate 
effects on the pre-yield modulus is small as seen from the slopes of the stress strain curve of 
epoxy (Jordan et al. 2008). 

For moderately high concentration, various closed form solutions have been provided for 
fiber composites using the generalized self consistent for fiber composites (Christensen 1990). 

!(b) (a) 

Figure 2: (a) Temperature vs true shear strain and (b) shear stress (Cauchy) vs true shear 
strain both at pure shear strain rate of 2×106 s-1. 
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We use these closed form expressions for our current problem since they are simpler and easier 
to use for various material parameters compared to variational methods like Mori-Tanaka 
estimates (Nemat-Nasser 1993). We denote the fiber and matrix Young’s modulus, shear 
modulus and Poisson ratio is denoted as Ef ,ν f ,µ f  and Em,νm,µm , respectively. These properties 

can be used to predict the five effective elastic properties of the transversely isotropic yarns – 
E11  the axial modulus, ν12  the axial Poisson’s ratio, µ12  the axial shear modulus, K23  the plane 
strain bulk modulus and µ23  the transverse shear modulus, where e1  is the fiber direction. If we 
denote the fiber volume fraction as c, we arrive at the following expressions (Christensen 1990), 

E11 = cEf + (1− c)Em +
4c(1− c)(ν f −νm )

2µm
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c(1− c)(ν f −νm )
µm

km +
1
3
µm

−
µm

k f +
1
3
µ f

"

#

$
$
$

%

&

'
'
'
µm

(1− c) µm

k f +
1
3
µ f

"

#

$
$
$

%

&

'
'
'
+ c µm

km +
1
3
µm

"

#

$
$
$

%

&

'
'
'
+1

       (3.2) 

µ12
µm
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and µ23  is given by the following quadratic equation, 
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where A, B and C are themselves functions of elastic properties of matrix and fibers and are 
given as, 
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B = −3c(1− c)2 µ f
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C = 3c(1− c)2 µ f
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where η f = 3− 4ν f  and ηm = 3− 4νm . 

Assuming Ef = 240GPa , ν f = 0.3 , Em = 2GPa , νm = 0.45 , c = 0.6  and using the usual 

relationship between elastic constants we arrive at the values shown in Table 2. 

Table 2: Effective property of anisotropic resin impregnated yarns 

E11  ν12  µ12  K23  µ23  
114.83 GPa 0.31 2.68 GPa 17.16 GPa 3.77 GPa 

 

3.1. Yarn damage mechanics  
Predicting damage and progressive failure in composite materials under impact is an active area 
of research. The morphology of composite material induces damage accumulation before 
ultimate structural collapse. Hence brittle failure based criterion will not yield satisfactory results 
as nonlinearities induced by accumulation of damage would be stepped over. On the other hand, 
accounting for every crack and void nucleated during loading together with wave scattering and 
fiber-matrix interfacial failures through a numerical code requires the kind of resolution which is 
beyond the reach of current computing and imaging technology. Therefore purely computational 
approaches, e.g., Oskay and Fish (2007) and Belytschko et al. (2008) which need tracking of 
cracks explicitly with restrictions on periodicity are impractical for complex, dynamic loading of 
fiber reinforced composites. 

The damage accumulation is assumed to be completely addressed by the failure of the yarn. 
Accumulating damage can be addressed through the framework of continuum damage mechanics 
(CDM).  The CDM approach relies on introducing phenomenological ‘internal variables’ which 
can track the degradation of the material within the limits of homogenization. These variables 
although don’t have a direct bearing to the micromechanics of crack and void growth must 
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adhere strictly to restrictions imposed by the laws of thermodynamics. A good introduction with 
many representative problems can be found in the book by Lemaître (2005). 

Due to integrally woven geometry of the 3D-OWC and localized ballistic impact loading, we 
neglect delamination mode of damage for the current model (Greenhalgh 2009). The effect of 
friction is also neglected. The yarn failure is thus predominantly due to damage accumulation 
through the intralaminar damage modes.  Neglecting delamination, we propose three damage 
scalars DF , DT  and DS  associated with fiber breakage, transverse cracking and shear damage 
respectively. Under these assumptions, we can write the Gibbs free energy for the yarn as 
(Lemaître 2005), 
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σ11
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Where σ ij  is the Cauchy stress, e1  is the fiber direction with transverse symmetry in the e2 − e3  

plane, E1  is the tensile Young’s modulous, E2 = E3  is the transverse Young’s modulous and 

G12  is the shear modulous. We can use the above expression of Gibbs free energy to obtain the 
compliance matrix H for the lamina, 

εI =
∂G
∂σ I

= [H ]{σ}            (3.10) 

where εI  and σ I  are Cauchy stress components in Voigt notation. This leads to, 
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     (3.11) 

The compliance clearly indicates that the damage variables are effectively degrading the 
stiffness of the matrix through the scalar damage parameters. However, it must be noted that 
damage caused by tension can be different from that caused by compression. To keep track of 
this variation, we rewrite the damage variables as, 

DF = DF+
σ11
σ11

+D
F−

−σ11
σ11

DT = DT +
σ 22

σ 22

+D
T −

−σ 22

σ 22

          (3.12) 
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where x  is the McCauley operator defined as x = (x + x ) / 2 . In this way, the eventual 

closure of transverse cracks under load reversal is taken into account. Depending on the sign of 
the corresponding normal stresses, a damage mode can be either active or passive. The model 
also assumes that the shear damage variable DS  is not affected by the closure effect. It should be 
noted that shear damage is caused mainly by transverse cracks which do not close under shear 
stresses.  The stiffness degradation through damage evolution starts as soon as damage initiation 
conditions are met. The damage variables then evolve till a critical failure value is reached at 
which point the material is said to have failed and unable to resist any loading. In the current 
work, we assume that damage evolution rate depends on the current state of stress, strain and 
damage of that particular mode with no interactive modes. The damage initiation function is 
assumed to depend purely on stress. Mathematically we can write this as, 

Dα =
0,                     fα (σ )< fcr '

φα (σ , ε,Dα ),    fα (σ )< fcr '

!
"
#

$#

Dα (0) = 0,    α = F±,T ±,S

         (3.13) 

where α  is the damage mode, fα , and φα , is the damage initiation and damage evolution 
function associated with the α  mode.  The initiation and evolution functions represent various 
stages of crack and void growth and nucleation. In other words the evolution of Dα  from 0 to a 
critical value Dα,cr , represents proliferation of cracks and voids which continually degrade the 

stiffness, CIJ = [H ]
−1  from an initial value of CIJ

0  to 0{ } 	
  when all damage modes have reached 

their critical value and the material is assumed to fail completely. Unfortunately obtaining the 
initiation and evolution values from actual measurements of crack and void density, shape, size 
etc. is impossible and hence phenomenological relations are often postulated. There is no 
unanimity on the value of critical damage variable either. It represents the point beyond which 
steady macro cracks cause failure. An indirect way to obtain damage evolution and completion is 
using an energy release approach wherein energy released after critical damage has been released 
is equated with fracture energy experiments. In other words, the area under the stress-
displacement curve after the initiation state is reached is obtained from experimental fracture 
energy experiments. Once a shape is postulated (which corresponds to the damage evolution 
law), one can precisely obtain the final displacement to failure. Pathological mesh dependency is 
eliminated by normalization through a characteristic length scale which depends on the mesh 
size. The critical damage variable when the material is failed is obtained when damage energy 
dissipation reaches the energy release rate obtained from fracture mechanics experiments. The 
physical basis of this theory closely follows the crack band theory developed by Bazant and Oh 
(1983) for concrete and is explained in detail in a recent paper by Lapczyk and Hurtado (2007). 
The Hashin-Rotem criterion (Hashin and Rotem 1973) is often used to initiate the damage modes 
in fiber reinforced composite. According to the criteria damage accumulation starts when scalar 
functions representing each failure mode - fiber tension (Ff

t ), fiber compression (Ff
c ), matrix 
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tension (Fm
t ) and matrix compression (Fm

c ) reach a critical value (in the current case=1). The 
expressions used are given in Table 3. 

Table 3: Description of the Hashin-Rotem damage initiation model 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

During ballistic loading however, dynamic conditions are present. However, since this failure 
model is used only for the yarn and S2 glass fibers exhibiting very little or no rate sensitivity, the 
matrix dominated transverse mode needs modification.  It is well known that dynamic crack 
fracture is a complicated phenomenon where fracture energy depends on duration of loading, 
shear and longitudinal wave speeds as well as the possibility of crack branching. For the present 
case, we assume that loading takes place rather rapidly and as a first approximation the dynamic 
energy release rate is approximately 25% higher than the static case (Meyers 1994) for the 
matrix dominated transverse modes. We assume that transverse failure initiation values are very 
close to the yield strength of polymer matrix resin. Noting the yield strength increase of resin 
material with increasing strain rate (Mulliken and Boyce 2006), we propose the following rate 
dependent failure initiation model for the matrix dominated failure initiation values Y T , Y C  and 
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where Y0
T , Y0

C  and S0
L  are respectively the reference transverse tension, transverse compression 

and longitudinal damage initiation strengths evaluated at strain rates ε0  and !εij  is the deviatoric 

part of strain rate tensor. The reference strain rate, ε0  is taken to be 0.001 (Jordan et al. 2008) 
and Λ

Yα
,  α = T,C  and Λ

SL
 are pre-multiplying factor which indicates the degree of strain rate 

sensitivity for each mode. The functional form is similar to the one proposed by Boyce et al. 
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XT : longitudinal tensile strength, XC : longitudinal compressive strength, Y T : transverse 
tensile strength, Y C : transverse compressive strength, SL : longitudinal shear strength, ST : 
longitudinal transverse strength, !σ = Hε , H is the instantaneous degraded compliance 
matrix and ε  is strain  in Voigt notation. 
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(1988) and is simplified for the triaxial loading conditions by assuming the effective strain rate 
which is defined as, 

ε = 2
3
!εij !εij             (3.15) 

Since no experimental data is available to precisely obtain the value of these pre-multipliers 
for 3D composites, we use the value of 1 noting from Jordan et al. (2008)’s uniaxial experiments 
that yield strength roughly doubles when strain rate increases by two orders of magnitude.  
However, experimental testing can be done to yield a more accurate value of this exponent. The 
failure initiation values used in this work are given in Table 4. 

Table 4: Failure initiation values for anisotropic yarns. 

XT  (MPa)  XC  (MPa) Y0
T  (MPa) Y0

C  (MPa) S0
L  (MPa) 

6000 8000 6000 300000 7000 

Finding the compression fracture energy for the model remains a challenge because not many 
standardized tests have been done for various fiber-matrix combinations. The only tests available 
in literature which can be directly used for our damage model have been done by Pinho et al. 
(2006) using a compact tension and compact compression specimen for T300/Epoxy composite. 
We have adapted Pinho and coworker's fracture data and the experiments done by Parhizgar et 
al. (1982), using values from 0o and 90o in the fracture energy calculations of Pinho et al. (2006). 
Using these approximations we arrive at the following damage properties for the yarn (Table 5): 

Table 5: Fracture  energy released rate for various damage modes 

Gft,c(N/mm)  
(Fiber-tension) 

Gfc,c(N/mm) 
(Fiber-compression) 

Gmt,c(N/mm) 
(Matrix-tension) 

Gmc,c(N/mm) 
(Matrix-compression) 

91600 76000 26800 22200 
 

4. Constitutive modeling of transversely isotropic yarns 
Fibers themselves are held together by the resin forming a composite yarn. There yarns are 
composed of individual fibers running axially, embedded in the surrounding matrix material. For 
most ballistic applications involving 3D composites, S2-glass fibers are commonly employed 
which can be treated as elastic brittle with negligible plastic zone. Moreover, the distribution of 
the fibers inside the yarn is assumed to be uniform for every cross section which allows us to 
consider them as transverse and isotropic. We assume no twisting of the yarn which is a 
characteristic of the most popular 3D-OWC produced by 3Tex® Inc. Hence, these yarns can be 
treated as unidirectional composite by themselves embedded in the larger 3D composite. 

The body starts from initial configuration B0 at temperature θ0   and at the end of loading 
(lasting for time ∆t) is at the new configuration B with the new temperature θ. We instead 
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envision the step through a couple of intermediate stress free states denoted by B* and B. There 
is no heat transfer to the surroundings from the body.  
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Figure 3: Decomposition of deformation through intermediate configuration. 
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Figure 4: Intermediate decomposition on temperature-specific entropy diagram. Reversible processes are 
shown in solid arrows and irreversible processes in dashed lines. 

The intermediate states can be described in a thermodynamic specific entropy (entropy per 
unit reference volume)-temperature (η-θ) diagram as show in Figure 2 below. From the picture it 
is clear that entropy is produced during the plastic step (B0-B*) due to various inelastic processes 
like motion of polymer chains, crack formation etc. We consider this entropy to be much smaller 
in comparison to other subsequent entropic processes. We consider the next thermal step (B*-B) 
to be reversible (equilibrium) and purely thermal taking the temperature from initial θ0 to θ1. The 
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heat transferred is supplied by the plastic dissipation from the previous plastic step (B0-B*). The 
next step (B-B) can be combination of reversible and irreversible step depending upon the 
presence of viscous effects.	
  

4.1. Thermodynamics of intermediate steps  
In this section, we look in detail, the thermodynamics of the intermediate steps.  

Step B0-B*: This step is an isothermal, isochoric and adiabatic elastic unloading. The work in this 
step is used to create inelastic phenomena like dislocations, polymer chain sliding, cracking etc. 
The total work done is composed of elastic part and an inelastic part. The elastic part is assumed 
to increment (or decrease) the internal energy whereas part of the plastic part is assumed to 
produce heat.   

Thus thermodynamically this can be written as:  

Δe
B0 −B

* = −δwB0 −B* +δqB0 −B* +δqB0 −B*            (4.1) 

where eΔ  denotes  internal energy change per unit initial (reference) volume, wδ  denotes 
specific  work done by the system, qδ  denotes specific thermal heat added to/generated by the 
system,  other irreversible sources such as acoustic/light etc are denoted by qδ  at this point.  
The total work during this elastic unloading can be divided into elastic and plastic work. The 
elastic work goes to change the internal energy and part of the plastic work causes heat 
production and other irreversible loss.  Thus: 

* * * * *
0 0 0 0 0

el pl
B B B B B B B B B B
e w w q qδ δ δ δ

− − − − −
Δ = − − + +          (4.2) 

If we assume that a certain fraction κ of plastic work goes directly to heat we have: 

( ) ( )* *
0 0

pl
B B B B
q w wδ κ δ κ δ

− −
= =            (4.3) 

where plwδ  is the plastic work.  

Step B*-B: In this step, the heat produced in the previous step causes internal energy change and 
no stress is applied to the system. Thus, it is a workless step.  Reapplying the first law of 
thermodynamics once again, we have: 

* * * *B B B B B B B B
e w q qδ δ δ

− − − −
Δ = − + +           (4.4) 

Now * * 0
B B B B
w qδ δ

− −
= =  due to purely thermal, stress free-state assumption. Assuming that the 

total thermal heat in step B0-B* is applied during step B*-B, we have * *
0B B B B

Q Qδ δ
− −

= . 

Dividing throughout by reference volume *
0B B

V V= , we get * *
0B B B B

q qδ δ
− −

= . Thus, we have: 

( )* * *
0

pl
B B B B B B
e q q wδ δ κ δ

− − −
Δ = = =            (4.5) 
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From basic thermodynamics, we have at constant stress: 

q
B0 −B

* =CS θ =κ w
pl              (4.6) 

where CS is the specific heat per unit reference volume and wpl  is the plastic power. Thus 
temperature equation can be written as: 

CS dθθ0

θ1∫ =κ wplΔt              (4.7) 

where tΔ  is the time increment. If specific heat per unit current volume is used, the thermal 
volume change must be taken into account. 

4.2. Computing stress from elastic step 
The elastic step consists of the process denoted by B-B. This can be reversible in the case of 
perfectly elastic material (which has no entropy sources) or partly irreversible in case of 
viscoelastic materials. This step can also be purely isothermal if elastic and viscous heating are 
completely neglected. We will proceed with each step relaxing the conditions on the way to 
derive the most general formulation.  However, the thermomechanical building blocks are built 
here which would be applicable later.  

We follow the standard Coleman-Noll formulation of extracting thermo-mechanical 
governing equations from the intrinsic dissipation inequality: 

Dint =
1
2
S : C e − e+θ η ≥ 0             (4.8) 

where S is second Piola-Kirchoff stress and Ce is the elastic part of left Cauchy-Green stress, e 
and η are specific internal energy and specific entropy per unit referential volume, respectively, 
and θ is the temperature. If the process is purely reversible the equality holds or else the 
inequality.  

It is clear from the above formulation that derivatives of energy and entropy must be 
calculated with respect to time. These time derivative are often converted to strain derivatives 
through chain rule. We carry out systematic analysis of these derivatives below.  

We multiplicatively decompose the elastic deformation gradient as following: 
1/3 ,  det( ) 1e e e
eJ= =F F F             (4.9) 

Similarly, the left Cauchy-Green stress can be written as: 
2/3,  ,  det( ) 1e eT e e e e
eJ= = =C F F C C C         (4.10) 

This multiplicative split in the deformation gradient can be augmented by an additive split in 
the specific internal energy and specific entropy. For equilibrium processes (no viscoelasticity), 
this can be written as: 



	
   19 

( ) ( ) ( )e e
vol e isoe , e ,J e ,θ θ θ=C + C          (4.11) 

and 

( ) ( ) ( )e e
vol e iso, ,J ,η θ η θ η θ=C + C          (4.12) 

The energy derivatives can be written as following: 

* *,  2vol iso
e

e

e ep
J

θθ

⎛ ⎞ ⎛ ⎞∂ ∂
= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

S
C

         (4.13) 

It must be noted that *p  is not pressure (that would be derivative with respect to Helmholtz free 

energy at constant temperature). Similarly *S  is not the usual isochoric stress. 

The computation of entropic derivative is eased by the thermodynamic quantity called the 
Gruneisen tensor. The Gruneisen tensor is a thermodynamic measure of variation of entropy with 
strain and is a useful quantity in further derivation. This tensor’s decomposition into volumetric 
and isochoric (deviatoric) parts will greatly aid in computation of time derivative of entropy 
which is an essential quantity for future derivations.  The Gruneisen tensor is written as: 

C C
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C Ce e

e
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e e e
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θ θ θ
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C
C C C

Γ       (4.14) 

It can be shown that this tensor can be written as: 

1 2/3

C

2
C 2e

e Te
e

J Jγ − −⎡ ⎤
= +⎢ ⎥

⎣ ⎦
PCΓ Γ :          (4.15) 

where ,  vol iso
e

eJ
η η

γ
∂ ∂

= =
∂ ∂C

Γ  and 11
3

T e e−= − ⊗P I C C  is the transpose of the projection tensor.  

4.2.1. Purely elastic without structural heating 
We are now in a position to compute the stress expressions. We start with the simplest case of 
isothermal purely-elastic step with no heating. In this case, the temperature in the step (B-B) 
remains constant at θ1. The intrinsic dissipation for this step can be written as: 

Dint =
1
2
S : C e − e+θ1 η           (4.16) 

This can be written using chain rule as: 

Dint =
1
2
S : C e −

∂evol
∂Je

Je +
∂eiso
∂C e

: C e
#

$
%%

&

'
((+θ1

∂ηvol
∂Je

Je +
∂ηiso
∂C e

: C e
#

$
%%

&

'
((      (4.17) 
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This can be recast as: 

Dint =
1
2
S : C e − p* Je +S* :

C e

2

!

"
#
#

$

%
&
&+θ1 γ Je +Γ :

C e

2

!

"
#
#

$

%
&
&

      = 1
2
S : C e − p* −γθ1( ) Je − 12 S* :

C e +θΓ : C e( )
       (4.18) 

From tensor analysis we know: 

Je = JeC
e−1 :
C e

2
           (4.19) 

C e = 2Je
−
2
3PT :

C e

2
           (4.20) 

Thus we get the expression for intrinsic dissipation as: 

Dint =
1
2
S : C e − p* −γθ1( ) JeC e−1 :

C e

2
− Je

−
2
3 S* −θΓ( ) :PT :

C e

2

      = S − p* −γθ1( ) JeC e−1 − Je
−

2
3 S* −θ1Γ( ) :PT

!

"
##

$

%
&& :
C e

2

     (4.21) 

Now due to perfect elasticity with no heating, the dissipation must disappear, leading to: 

( ) ( ) ( ) ( )
2 2

1 13 3
* 1 * 1 1 * 1: :e T e

e e e ep J J p J Jγθ θ γθ θ
− −− −= − − − = − − −S P P SS C CΓ Γ    (4.22) 

The conversion to Cauchy stress can be done using the following expression: 

1 e eT

eJ
= F SFσ            (4.23) 

or 

( ) ( )
2

1 3
* 1 * 1

1 :e e eT e eT
e e

e

p J J
J

γθ θ
−−⎡ ⎤

= − − −⎢ ⎥
⎣ ⎦

P SF C F F FΓσ      (4.24) 

Recalling the deviatoric-isochoric split of the deformation gradient, we arrive at: 

( ) ( )1
* 1 * 1:e eT

ep Jγθ θ− ⎡ ⎤= − −⎣ ⎦P SI + F FΓσ        (4.25) 

4.2.2. Purely elastic with structural heating 
In the thermo-elastic step, there is temperature change. Thus the time rate of change of internal 
energy and entropy can be written as: 
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e(θ ,C e ) =
∂evol (θ ,Je )

∂Je

!

"
##

$

%
&&
θ

Je +
∂eiso (θ ,C

e )
∂C e

!

"
##

$

%
&&
θ

: C e +
∂e
∂θ

"

#
$

%

&
'
C e

θ       (4.26) 

and 

η(θ ,C e ) =
∂ηvol (θ ,Je )

∂Je

!

"
##

$

%
&&
θ

Je +
∂ηiso (θ ,C

e )
∂C e

!

"
##

$

%
&&
θ

: C e +
∂η
∂θ

"

#
$

%

&
'
C e

θ      (4.27) 

Thus, the intrinsic dissipation would become: 

Dint =
1
2
S : C e − p* Je +S* :

C e

2
+

∂e
∂θ

#

$
%

&

'
(
C e

θ
#

$

%
%

&

'

(
(
+θ γ Je +Γ :

C e

2
+
∂η
∂θ

#

$
%

&

'
(
C e

θ
#

$

%
%

&

'

(
(
     (4.28) 

In other words: 

Dint =
1
2
S : C e − p* Je +S* :

C e

2

"

#
$
$

%

&
'
'+θ γ Je +Γ :

C e

2

"

#
$
$

%

&
'
'+ θ

∂η
∂θ

"

#
$

%

&
'
C e
−

∂e
∂θ

"

#
$

%

&
'
C e

"

#

$
$

%

&

'
'
θ     (4.29) 

Clearly, the last term which is coefficient of temperature rate is identically zero from basic 
thermodynamics. Thus, the form of equation developed in the earlier section is preserved: 

Dint =
1
2
S : C e − p* Je +S* :

C e

2

"

#
$
$

%

&
'
'+θ γ Je +Γ :

C e

2

"

#
$
$

%

&
'
'        (4.30) 

This is similar to previous section and thus yields the following Cauchy stress expression: 

( ) ( )1
* *:e eT

ep Jγθ θ− ⎡ ⎤= − −⎣ ⎦P SI + F FΓσ          (4.31) 

However, an important distinction is that the temperature is no longer constant and its evolution 
with time must be separately provided for by a temperature evolution equation.  

The temperature rise in this step is now a combination of both structural elastic as well as 
inelastic effects.  The temperature evolution can be derived as follows: 

η(C e ,θ ) = ∂η
∂C e

: C e +
∂η
∂θ
θ            (4.32) 

We recall the following thermodynamic identities: 

C
C

2 ,  C
C e

ee
e

θ

η η
θ

θ
⎛ ⎞∂ ∂⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ CC

Γ =           (4.33) 

Thus the above equation can be written as: 



	
   22 

η(C e ,θ ) =
C
Ce

2
Γ : C e +

C
Ce

θ
θ            (4.34) 

This can be written as: 

θ η = 1
2
θC

CeΓ : C e +C
Ce
θ           (4.35) 

The heat transfer equation can next be written as: 

θ η = −∇⋅q+Dint + R            (4.36) 

where q is the heat flux, Dint is the internal dissipation and R is sum of local volumetric heat 
sources. Since the process is perfectly elastic and adiabatic, Dint=0, R=0, q=0. Thus eliminating 
entropy among the equations, we get: 

0 = 1
2
θC

CeΓ : C e +C
Ce
θ           (4.37) 

Thus, temperature evolution is given by: 

θ = − 1
2
θΓ : C e             (4.38) 

It can be shown that: 

θ = −θΓ :F eTDeF e            (4.39) 

where ( )1
2

e e eT+D L L=  is the elastic stretch rate given in terms of the velocity gradient eL . 

If the temperature at the end of this process is 2θ  the Cauchy-stress would be: 

( ) ( )1
* 2 * 2:e eT

ep Jγθ θ− ⎡ ⎤= − −⎣ ⎦P SI + F FΓσ        (4.40) 

4.2.3. Visco-elastic with structural heating/cooling 
Viscoelastic phenomena is an inelastic phenomena which can occur even without a threshold 
effect. One way to model it is to assume viscoelasticity to come from purely non-equilibrium 
(NE) processes which is additive to the steady state internal energy and entropy through internal 
variables as: 

1 1( , , ) ( , ) ( , ,..., )e e visc
Ne e eθ ξ θ θ ξ ξ∞= +C C         (4.41) 

η(θ,Ce,ξ1 ) =η
∞(θ,Ce )+ηvisc (θ,ξ1 ,...,ξN )         (4.42) 
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where e∞  is the steady state response whereas evisc  is the non equilibrium response which is 
assumed to depend only on the deviatoric part of strain. Here, we would need an additional 
evolution equation for the internal variable is: 

ξα =
ξα (ξβ ,C

e ),  α,β =1...N           (4.43) 

Writing the dissipation inequality: 

Dint =
1
2
S : C e − e(θ ,C e ,ξ1 ,...,ξN )+θ η(θ ,C

e ,ξ1 ,...,ξN ) ≥ 0       (4.44) 

or 

Dint =
1
2
S : C e − e∞(θ ,C e )+ evisc (θ ,C e ,ξ1 ,...,ξN )+θ η

∞(θ ,C e )+ ηvisc (θ ,C e ,ξ1 ,...,ξN )!
"

#
$≥ 0      (4.45) 

where  

evisc (θ ,C e ,ξ1 ,...,ξN ) =
∂evisc

∂ξα
: ξα +

∂evisc

∂θ
: θ∑        (4.46) 

Let us assume a simple evolution law: 

ξα +
ξα
τα

= βα
C e            (4.47) 

plugging in above yields: 

evisc (θ ,C e ,ξ1 ,...,ξN ) =
∂evisc

∂ξα
: βα

C e −
ξα
τα

#

$
%%

&

'
((+

∂evisc

∂θ
: θ∑       (4.48) 

similarly: 

ηvisc (θ ,C e ,ξ1 ,...,ξN ) =
∂ηvisc

∂ξα
: βα

C e −
ξα
τα

#

$
%%

&

'
((+

∂ηvisc

∂θ
: θ∑       (4.49) 

Thus, the dissipation inequality becomes: 

Dint =
1
2
S : C e − e∞(θ ,C e )+θ η∞(θ ,C e )− βα

∂(evisc −θηvisc )
∂ξα

: C e∑

         +
∂(evisc −θηvisc )

∂ξα
:
ξα
τα

≥ 0∑
     (4.50) 

Clearly the viscous terms multiplying the deviatoric strain rates have units of stress. In addition, 
recognizing the form of Helmholtz free energy, we get: 
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Dint =
1
2
S : C e − e∞(θ ,C e )+θ η∞(θ ,C e )− S visc :

Cα

2
+

∂ψ visc

∂ξα
:
ξα
τα

≥ 0∑     (4.51) 

where  

( )2 2
visc visc visc

visc e
α α

α α

θη ψ
β β

ξ ξ
∂ − ∂

= =
∂ ∂∑ ∑S        (4.52) 

assuming from construction of appropriate function the following is made to identically be 

satisfied : 0
visc

α

α α

ξψ
ξ τ

∂
≥

∂∑  and noting from equation (4.20), we get: 

Dint =
1
2
S − Je

−
2
3S visc :PT

!

"
##

$

%
&& : C

e − e∞(θ ,C e )+θ η∞(θ ,C e ) ≥ 0       (4.53) 

Now the above can be further simplified as: 

Dint =
1
2
Ŝ : C e − e∞(θ ,C e )+θ η∞(θ ,C e ) ≥ 0,    Ŝ = S − Je

−
2
3S visc :PT      (4.54) 

This enormously simplifies our analysis for we can carry out our usual derivations for the 
remaining part thereby arriving at: 

2 2
1 13 3

* * * *
ˆ ( ) ( ) : ( ) : ( )e T e

e e e ep - J J p - J Jγθ θ γθ θ
− −∞ − ∞ ∞ − ∞= − − = − −S Γ P P S ΓS C C    (4.55) 

where * *
( , ) ( , ),  vol e iso e

e e

e J ep
J
θ θ∞ ∞

∞ ∞∂ ∂
= =

∂ ∂
S C

C
. The conversion to Cauchy stress can be done using 

equation (4.23) as follows: 

( ) ( )
2

13
* *

1 : :e visc T eT e eT
e e

e

J p J
J

γθ θ
− −⎛ ⎞

⎡ ⎤= − −⎜ ⎟ ⎣ ⎦
⎝ ⎠

P P SF S F I + F FΓσ −     (4.56) 

or 

( ) ( )1
* *:e visc eT

ep Jγθ θ− ⎡ ⎤= − −⎣ ⎦P SI + F S FΓ +σ        (4.57) 

The temperature rise in this step is now a combination of both structural elastic as well as 
inelastic effects.  The temperature evolution can be derived as follows: 

η(θ ,C e ,ξ1 ,...,ξN ) =
∂η
∂C e

: C e +
∂η
∂θ
: θ + ∂η

∂ξα
: ξαα=1

N
∑       (4.58) 
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We recall the following 
C

2 ,  ,  
C ee

visc

e
α αθ

ηη η η
θ

θ ξ ξ
⎛ ⎞ ∂∂ ∂ ∂⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ CC

Γ = eCC ; thus the above 

equation can be written as: 

η(θ ,C e ,ξ1 ,...,ξN ) =
C

Ce

2
Γ : C e +

C
Ce

θ
θ +

∂ηvisc

∂ξα
: ξαα=1

N
∑       (4.59) 

This can be written as: 

θ η = 1
2
θC

Ce
Γ : C e +C

Ce
θ +θ

∂ηvisc

∂ξα
: ξαα=1

N
∑         (4.60) 

The heat transfer equation can next be written as: 

θ η = −∇⋅q+Dint + R            (4.61) 

where q is the heat flux, Dint is the internal dissipation and R is sum of local volumetric heat 
sources. Since the process is adiabatic, q=0. Thus eliminating entropy among the equations, we 
get: 

Dint + R =
1
2
θC

Ce
Γ : C e +C

Ce
θ +θ

∂ηvisc

∂ξα
: ξαα=1

N
∑        (4.62) 

Thus, temperature evolution is given by: 

C
Ce
θ = Dint + R−

1
2
θC

CeΓ : C e −θ
∂ηvisc

∂ξα
: ξαα=1

N
∑         (4.63) 

Plugging in the value of intrinsic dissipation: 

C
Ce
θ = θ

∂ηα
visc

∂ξα
α=1

N
∑ −

∂eα
visc

∂ξα
α=1

N
∑

$

%
&&

'

(
)) :
ξα + R−

1
2
θC

CeΓ : C e −θ
∂ηvisc

∂ξα
: ξαα=1

N
∑

or

C
Ce
θ = R− 1

2
θC

CeΓ : C e − Ξα : ξαα=1

N
∑

   (4.64) 

The temperature rise can be computed if the evolution equations for the internal variable are 
known: 

ξα =
ξα (θ ,C

e ,ξ1 ,...,ξK )           (4.65) 

The final Cauchy stress then can be computed at final temperature 2θ  as: 

σ = p* − γθ2( ) I + Je−1F e P : S* −θ2
Γ( )!

"#
$
%&
F eT         (4.66) 
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4.3. Fiber composite – hyperelastic case 
Let us explore the case of fiber composite in detail. Let us denote the initial orientation of the 
fiber by the unit vector 0a . Thus the internal energy can be written as: 

0 1 2 3 4 5 1 2 4 5ˆ( , ) ( , ) ( , , , , , ) ( , , , , , )e e
ee e , e I I I I I e J I I I Iθ θ θ θ= = =C a C     (4.67) 

where kI  and kI  are the strain invariants of the given problem and are given by: 

( )2 2 2
1 2 1 3 4 0 0 5 0 0

1( ), ( ) , det( ), ,
2

e e e e eI tr I I tr I I I= = − = = ⋅ = ⋅C C C a C a a C a    (4.68) 

and 

( )2 2 2
1 2 1 4 0 0 5 0 0

1( ), ( ) , ,
2

e e e eI tr I I tr I I= = − = ⋅ = ⋅C C a C a a C a      (4.69) 

Assuming a deviatoric/isochoric split in the energy: 

1 2 4 5 1 2 4 5( , , , , , ) ( , ) ( , , , , )e vol e isoe J I I I I e J e I I I Iθ θ θ= +       (4.70) 

where  
2( , ) ( )( 1)vol e ee J K Jθ θ= −           (4.71) 

The fictitious modified isochoric stress *S  can be written as: 

 

( )

* 1, 3

1 2 4 0 0 5 0 0 0 0

2 2

ˆ ˆ ˆ ˆ ˆ ˆ    

Niso isoe e I
I

α
α α

α

γ γ γ γ

= ≠

∂ ∂ ∂
= = ⋅

∂ ∂ ∂

= ⊗ + ⊗ + ⊗

∑S
C C

I + C + a a a Ca Ca a
      (4.72) 

where 1 1 2 4 5
1 2 2 4 5

2 ,  2 ,  2 , 2iso iso iso iso isoe e e e eI
I I I I I

γ γ γ γ
⎛ ⎞∂ ∂ ∂ ∂ ∂

= + = − = =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 

In indicial notation,  

0 0 0 0 0 0

0 0 0 0 0 0

ˆ ˆ ,  

ˆ ˆ ,  
ij i jk k i k jk

ij k ki j k j ki

X a C a a a C

X a C a a a C

⊗ = =

⊗ = =

X = a Ca

X = a C a
        (4.73) 

Thus: 

( )* 1 2 4 0 0 5 0 0 0 0S ij ij ij i j i k jk k j kiC a a a a C a a Cγ δ γ γ γ= + ++ +       (4.74) 

The anisotropic potential takes the following form (simple extension of Mooney-Rivlin): 

1 2 4 5 1 1 2 2 4 4 5 5( , , , , ) ( )( 3) ( )( 3) ( )( 1) ( )( 1)isoe I I I I I I I Iθ α θ α θ α θ α θ= − + − + − + −    (4.75) 

Therefore,  
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( )1 1 1 2 2 2 4 4 5 52 ( ) ( ) ,  2 ( ),  2 ( ),  2 ( )Iγ α θ α θ γ α θ γ α θ γ α θ= + = − = =     (4.76) 

For a simple isotropic case: 

* 2 ( )( 1)vol
e

e

ep K J
J

θ

θ
⎛ ⎞∂

= = −⎜ ⎟
∂⎝ ⎠

         (4.77) 

( )* 1 1 2 2 1 2 12 ( ) ( ) 2 ( ) 2 ( ) 2 ( )( )I Iα θ α θ α θ α θ α θ= + − + −S I C = I I C     (4.78) 

For pure translation 1,  ,  3I= = =F I C = C I  

( )
( ) ( )

* 1 2 4 0 0 5 0 0 0 0

1 2 4 5 0 0

1 2 0 0

1 2 0

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ    2

ˆ ˆ    

    

K K
K K

γ γ γ γ

γ γ γ γ

= ⊗ + ⊗ + ⊗

= ⊗

= + ⊗

= +

S I + I + a a a a a a

+ I + + a a

I a a
I A

       (4.79) 

Hence,  

* 1 2 0 0 2 0 0
1 1: 0 ( ) ( )
3 3

K K tr K tr⎛ ⎞ ⎛ ⎞= × + × − = × −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P S A A I A A I      (4.80) 

4.4. Fiber composite – viscoelastic case 
The next case study pertains to composites with finite viscoelasticity. The internal energy 
function is assumed to be of the following form: 

1 0 1ˆ( , ,..., ) ( , , , ,..., )e e
N Ne eθ , θ=C a Cξ ξ ξ ξ         (4.81) 

For the sake of brevity, let us assume that is only one internal variable for the time being, thus: 

1 0ˆ( , ,..., ) ( , , , )e e
Ne eθ , θ=C a Cξ ξ ξ          (4.82) 

From the discussion of the previous section, it is transparent that all we need is a way to estimate 
the viscous stress through the internal variable. The dissipative Helmholtz potential can be 
written as ( , )viscψ θ ξ  and the evolution equation is given by: 

ξ + ξ
τ
= β C e             (4.83) 

Thereby the viscous stress is given by: 

2 2
visc visc

visc
α

α

ψ ψ
β β

∂ ∂
= =

∂ ∂∑S
ξ ξ

         (4.84) 
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A simple form of free energy that satisfies the second law dissipation inequality : 0visc ≥S ξ  is 
given by: 

1 :
2

visc
viscCψ = ξ ξ            (4.85) 

where Cvisc is a viscosity tensor. An easier simplification would be if it is assumed to be isotropic 
thereby giving: 

01 :
2

visc
viscCψ = ξ ξ            (4.86) 

Thus: 
0visc
viscC=S ξ             (4.87) 

For this simple case, one can write the evolution equation directly in terms of viscous stress as: 

S visc + S
visc

τ
=Cvisc

0 β C e            (4.88) 

4.5. Yarn damage mechanics  
Predicting damage and progressive failure in composite materials under impact is an active area 
of research. The morphology of composite material induces damage accumulation before 
ultimate structural collapse. Hence brittle failure based criterion will not yield satisfactory results 
as nonlinearities induced by accumulation of damage would be stepped over. On the other hand, 
accounting for every crack and void nucleated during loading together with wave scattering and 
fiber-matrix interfacial failures through a numerical code requires the kind of resolution which is 
beyond the reach of current computing and imaging technology. Therefore purely computational 
approaches, e.g., Oskay and Fish (2007) and Belytschko et al. (2008) which need tracking of 
cracks explicitly with restrictions on periodicity are impractical for complex, dynamic loading of 
fiber reinforced composites. 

Continuing from the previous grant period, we now extend the continuum damage mechanics 
framework to include damage mechanisms suitable for the high strain rate regime.  

The total internal energy without damage can be written as: 

1 2 4 5 1 2 4 5( , , , , , ) ( , ) ( , , , , )e vol e isoe J I I I I e J e I I I Iθ θ θ= +       (4.89) 

We assume that the volumetric and isochoric damages are a result of different mechanisms, with 
volumetric part directly contributed by pressure and the isochoric part through shear. Thus, the 
energy functional can be written as: 

1 2 3 4
1 2 4 5(1 ) ( , ) ( , , , , , , , , )vol vol e iso iso iso iso isoe D e J e I I I I D D D Dθ θ= − +      (4.90) 
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where Dvol and Diso are the volumetric and shear damage parameters respectively.  We postulate 
the volumetric damage evolution law as follows: 

Dvol = Dvol
N2lcr

N2 p
σ eq

!

"
#
#

$

%
&
&

N2

           (4.91) 

where N1, N2 and  N3 are empirical exponents, lcr is the empirical characteristic flaw size, p is 
pressure and σeq is the von-Mises stress at the material point. The isochoric damage variables 
Diso
1 , Diso

2  Diso
3 , Diso

4  represent uniaxial tension (fiber parallel), compression (fiber 
perpendicular), transverse shear, and in-plane shear, respectively and each have their own 
evolution rules. 

5. Numerical Examples 
There have been relatively few experiments conducted to quantify ballistic penetration data for 
3D orthogonal woven fiber composites. One of the preliminary experiments on the system 
currently being studied has been done by Gama et al. (2001). The authors carried out bullet 
impact experiments on 3D-OWC. The panels were obtained from 3Tex® Inc. In their 
experiments, bullets of 5 mm diameter made from Steel were fired orthogonally at these panels.  
The authors reported photographic evidence as well as measurements of incident and exit speeds. 
In this section we will simulate the event and discuss the results obtained from the model against 
experimental results.  

5.1. Composite plate geometry  
The particular three-dimensional woven fiber composite geometry considered here in constructed 
by repeating a fundamental unit cell, which is shown in Figure 5(a)-(c) and is developed after 
Chou. The overall dimensions of the unit cell are 9.236mm x 9.932mm x 5.390mm. The fill (X), 
warp (Y) and Z tows are idealized as prismatic bodies. The fiber tows are discretized using finite 
strain continuum shell elements and the resin by fully integrated three dimensional hexahedral 
elements. A minimum of four continuum shell elements are used to discretize the smallest 
dimension of a tow. In the overall discretization, the aspect ratios of the elements are kept 
similar. A total of 127616 of these continuum shell elements were used each with thickness 
0.1mm and 5 integration points used for through thickness integration to model the X, Y and Z 
yarns. A total of 47424 of 3D fully integrated hexahederal elements were used to discretize the 
resin and projectile. This mesh density has been kept the same for all analysis performed in this 
paper. 

The plate is clamped at the boundaries allowing for no slip at the clamps. Furthermore, 
symmetry boundary conditions are used to model only quarter of a plate and hence 4 repeating 
unit cells as our computational domain can be used to model a plate 4 times as large. 
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Figure 5: (a) Impact system setup with a quarter plate and quarter of a rigid right cylindrical projectile (b) 
unit cell (c) meso scale components making up the unit cell. 

Since we are interested in investigating penetration, a sufficiently high enough projectile 
speed will be taken. Penetration is a complex process and depends on a large number of 
parameters. Projectile momentum as well as mechanical properties determine the time of 
penetration. At high speed penetration boundary conditions are of little significance due to highly 
localized damage.  In this section we present some numerical examples of simulations of 
projectile impact at 500 m/s on a three dimensional woven fiber composite plate. The projectile 
is assumed to be a rigid right circular cylinder under isothermal conditions with mass of 1 gram 
and diameter of 5mm to represent the projectile used in the ballistic experiment.  

5.2. Experimental validation and key insights 

5.2.1. Hyperbolic damage profile 
The damaged zone which corresponds to the region of high stress transients has a hyperbolic 
front centered at the point of impact. Clearly the evolving stress contours in Figure 6(c) indicate 
an advancing hyperbolic stress front. Our simulations from Figure 6 clearly reproduce the 
characteristic diamond shaped failure region at the front and at the back as observed in the 
experiments. Our simulations also show localized Z-fiber damage as reported by the experiments 
(Gama 2001).  

 (a)   (b)  (c) 

Figure 6: (a) Experimental photographs of plate rear side by Gama et al. (2001); (b) qualitative comparison 
of simulation results with experiments done by Gama et al. (2001) (c) hyperbolic profile of the advancing 
stress front. 

5.2.2. Highly Directional Rear Face Tensile Damage Distribution  
The next figure shows the spatial distribution of the tensile damage field of the rear face just 
after a perforation event has taken place. In the experimental results, there is a marked difference 
in the damage directionality of the strike face compared to the rear face as seen in Figure 7(a). 

!(a) (b) (c) 
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The Figure 7(b) corroborates the fact. The directionality is defined with respect to the direction 
of Z fiber windings over the matrix.  

 (a)  (b) 

Figure 7: (a) Tensile damage region just after penetration (b) fiber damage and pullout visible in experiments 
done by Gama et al. (2001). 

5.2.3. Bulk Matrix Rate Effects Show Two Distinct Regimes 
Disappearance of rate effects (Figure 8(a)-(b)) is very interesting as, theoretically, rate effects 
should be minimal for quasi-static indentation and maximum for high speed impacts. We explain 
this apparent paradox by realizing that as the matrix resin stiffens at high strain rates, there is a 
competing nonlinearity due to the onset of damage. Hence, corresponding to a high speed 
impact, the improvement in ballistic resistance due to rate effects is effectively nullified by a 
rapid onset of material failure. This anomaly of diminishing rate effects have been observed by 
before during the shock plate experiments of (Pankow et al. 2011) and cannot be explained by 
hot-spot analysis only without incorporating a damage law into the formulation.  

(a)  (b) 

Figure 8 (a) Projectile velocity-time profile comparison between models with and without rate effects at 
500m/s (b) Projectile velocity comparison between models with and without rate effects at 100m/s 

5.2.4. Damage Anisotropy Effect of Z-fiber on Matrix and Fiber Damage 
The effect of Z-fibers is more than simply preventing delamination across inter-ply layers. Figure 
9(a) shows that the Z-fibers running on the surface of the Y-fibers in an orthogonal direction 
scatter the stress waves away from them, thereby reducing the immediate area of damage.  The 
damage is thus restricted primarily in the Y-direction. Z-fibers thus cause directional damage in 
the fibers but diffuse damage in the matrix in the yarns. Figure 9(a), (c) and (b), (d) show the 
fiber compression and tensile damage damage in 3D-OWC and 2D layered composites, 
respectively. The left and right panels of Figure 10(a)-(f) show that in spite of highly localized 
terminal the matrix damage at Z fiber sites has potential for void growth and interlaminar cracks 
thereby reducing the ability of Z-fibers to act effectively during future impact events. Clearly the 
purported benefits of Z fibers over stitched composites are that it doesn’t physically damage the 
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composite structure. In deed this conclusion has been experimentally observed by Pankow et al. 
(2011) during shock loading of these panels who noted that beyond 6% Z-fiber concentration, 
the stiffness properties appreciably deteriorate.  

(a) (b)  (c) (d) 

Figure 9: (a): Strike face fiber tension damage for 3D OWC (b) Strike face fiber tension damage for layered 
composite (c) Strike face fiber compression damage for 3D OWC (d) Strike face fiber compression damage 
for layered composite 

	
  

  (a)   (b)     (c)                            

  (d)   (e)     (f) 

Figure 10: (a): Strike face fiber tension damage for 3D OWC (b) Strike face fiber tension damage for layered 
composite (c) Strike face fiber compression damage for 3D OWC (d) Strike face fiber compression damage 
for layered composite 

Finally, Table 6 gives the summary of the challenges and achievements for the macro-scale 
modeling. 

Table 6: Summary of challenges and their resolution 

Modeling and Computational Challenges Successful Resolution 
Damage laws Meso level micromechanics 
Damage initiation rate sensitivity Modified Hashin 
Resin ductile to brittle transition Terminal thermo-mechanical damage law 
Damage evolution Crack band type regularized  fracture mechanics 

based model  

 

5.3. Study of anisotropic composite material response with changing material parameter 
We now examine the effect of Gruneisen tensor on the composite materials response. The 
Gruneisen parameter is an important material property quantifying the entropy dependence on 
deformation for a material. In a typical shock physics application (Davison 2008), this is treated 
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as a scalar variable. This is justified through the reasoning that shock regime comprises of bulk 
response of a material which is well past the shear limit of a typical material. In our 
computational material model, we found that for anisotropic materials, the full tensorial 
representation is critical to capture the essential physics of the process. In the Figure 11 and 12, 
we show that varying the anisotropy of Gruneisen tensor can have significant impact on the 
incipient plasticity of a material. We show that as this tensor is rotated about [100] (Figure 11) 
and [001] (Figure 12), the J2 changes significantly even though the bulk response may not. We 
also report that even in the case of isotropic solids with anisotropic Gruneisen tensor, same 
effects show up. 
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Figure 11: Anisotropic material response with changing Gruneisen tensor (rotation about [100]). 
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Figure 12: Anisotropic material response with changing Gruneisen tensor (rotation about [001]). 

6. Summary 
We achieved or even exceeded key goals to achieve a multiscale damage model for the impact 
problem proposed. The meso scale damage mechanics avoids the theoretical pitfalls associated 
with regular multiscale methods based on fiber level classical homogenization as well as unit cell 
level averaging methods. The anisotropic yarn properties are modeled using generalized self-
consistent method for fiber composites. This method has the advantage of yielding closed form 
expressions. The model predicted various experimental observations from direct penetration tests 
as well as standardized split Hopkinson and shock plate impact tests as well. We found that both 
Z-fiber and bulk matrix rate effects can improve ballistic resistance depending on the momentum 
of the projectile and dimension of the plate. However, in the penetration range, competing 
nonlinearities tend to nullify each other producing both localized effects and potential crack 
nucleation sites through wave propagation. We also found that the effect of Z–fiber on damage 
distribution is not straightforward and analysis of both fiber and matrix damage mode explained 
many of the unique damage features of 3D-OWC. Although obtaining data for fitting damage 
models remains, we have drastically cut the number of arbitrary parameters necessary to obtain 
predictive capabilities. This model of the yarn is further extended into a large deformation 
model. We propose a damage law based on consistent thermomechanics for a typical 
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unidirectional composite, which can be easily extended for composites with greater degree of 
anisotropy. We examined the effect of material parameter such as Gruneisen tensor on the 
composite materials response. In our computational material model, we found that for 
anisotropic materials, the full tensorial representation is critical to capture the essential physics of 
the process. We also report that even in the case of isotropic solids with anisotropic Gruneisen 
tensor, same effects show up. However, we could not validate our model due to lack to 
experimental data. Overall, this mesoscale model while less computationally expensive than a 
standard homogenization, it still remains computationally prohibitive for large plate impacts. The 
next step in addition to parameter estimation would be to develop a continuum level model to 
make the model amenable to large-scale computations. 
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